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Monitoring a bioprocess for ethanol production using FT-MIR and
FT-Raman spectroscopy
S Sivakesava, J Irudayaraj and A Demirci

Department of Agricultural and Biological Engineering, Pennsylvania State University, 249, Agricultural Engineering Building,
University Park, PA 16802

The application of Fourier transform mid-infrared (FT-MIR) spectroscopy and Fourier transform Raman (FT-
Raman) spectroscopy for process and quality control of fermentative production of ethanol was investigated. FT-MIR
and FT-Raman spectroscopy along with multivariate techniques were used to determine simultaneously glucose,
ethanol, and optical cell density of Saccharomyces cerevisiae during ethanol fermentation. Spectroscopic
measurement of glucose and ethanol were compared and validated with the high-performance liquid chromatog-
raphy (HPLC) method. Spectral wave number regions were selected for partial least-squares (PLS) regression and
principal component regression (PCR) and calibration models for glucose, ethanol, and optical cell density were
developed for culture samples. Correlation coefficient ( R2) value for the prediction for glucose and ethanol was more
than 0.9 using various calibration methods. The standard error of prediction for the PLS first-derivative calibration
models for glucose, ethanol, and optical cell density were 1.938 g/, 1.150 g/I, and 0.507, respectively. Prediction
errors were high with FT-Raman because the Raman scattering of the cultures was weak. Results indicated that FT-
MIR spectroscopy could be used for rapid detection of glucose, ethanol, and optical cell density in S. cerevisiae
culture during ethanol fermentation. Journal of Industrial Microbiology & Biotechnology (2001) 26, 185—190.
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Introduction

The ability to control fermentation is of paramount importance in
the optimization of biomass and product synthesis. Parameters such
as biomass, nutrient, by - product and product concentrations play a
major role in modulating the kinetics during fermentation. Several
labor-intensive analytical techniques are required to measure
biomass, nutrients, and product. An increase in the efficiency of
measurement and monitoring procedures has a high potential to
result in an increase in the efficiency of these bioprocesses.

Generally bioprocesses give rise to materials that progress from
translucent to increasingly opaque matrices as the microbial cells
multiply and become highly light - scattering and give rise to intense
molecular vibrational signals. Monitoring specific molecular
vibrations using an appropriate spectroscopic technique will allow
specific fingerprinting of singular or multicomponents and hence
their determination. Spectroscopic techniques are rapid (assay time
~2 min), nondestructive, require no sample preparation and
provide the opportunity to measure several broth constituents
simultaneously. Present spectroscopic instrumentations are robust,
precise, and can be easily operated by unskilled personnel. Other
techniques, such as flow injection analysis or HPLC, generally
involve more sample preparation, longer analysis times, skilled
staff, and require specific protocol for measurement of individual
chemical species, in any given sample.

There has been an increasing interest in the use of near-infrared
(NIR) [2-5,13,15,16,22,29] spectroscopy in conjunction with
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chemometric techniques to monitor biological processes. Although
a number of diverse process systems have been investigated, most
of the results reported to date have been on NIR. No work has been
done with FT-Raman spectroscopy and only a limited amount has
been done with mid-infrared (MIR) [1,7,9,20,28] spectroscopy
to monitor biological processes and no published information on
the applicability of MIR spectroscopy to monitor ethanol
fermentation is available. A computer-based technique for
classifying and identifying bacterial samples using FT-MIR
spectroscopy was described [18]. Classification schemes were
tested for selected series of bacterial strains and species from a
variety of different genera. The concentrations of ethanol [3],
fructose, glycerol, glucose, ethanol [ 10], and the yeast cell density
[12] have been quantified by spectroscopic methods.

MIR spectroscopy measures the fundamental vibrational modes
of molecules. As a consequence, it has a unique advantage over
NIR spectroscopy: not only known species can be quantified, but
also unknown species that frequently arise in complex systems can
be detected and identified. This method is unconstrained by
dynamic range and within the performance limits of the instrument
components and has excellent sensitivity [6]. The attenuated total
reflection (ATR) technique using an ATR accessory in the FTIR
spectrometer has evolved as a suitable method for quantitative
characterization of components during a bioprocess. A comparative
study was conducted using FTIR—ATR and a cylindrical internal
reflection (CIR) accessory for the determination of sugars in soft
drinks and fruit juices [11]. Analytical sensitivity obtained using
the ATR cell was three times higher than that obtained using the
CIR unit.

Quantitative FTIR spectroscopy has been used in a wide range
of applications. The determination of glucose in whole blood [17],
human plasma protein mixtures [25] and the spectral analysis of
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human blood plasma [21] have been carried out. FTIR spectro-
scopy was used to study ethanol production from whey [7] and
on-line analysis of lactose and lactic acid [8]. Most spectroscopic
quantitative analysis procedures require the use of multivariate
statistics or chemometrics.

Partial least-squares (PLS) and principal component regres-
sion (PCR) methods are some of the most relevant chemometric
methods used for spectral data analysis. They are useful for solving
the collinearity problem as well as for providing additional graphic
information about the relationship between spectrum and chemical
composition. In this analysis the X variables are wave numbers and
Y the corresponding intensity. These methods compress X variables
(wave numbers) to a small number of so-called components or
scores. These components are linear combinations of the original
spectral values and describe the variation of data. In PCR, the
components are simply the classical principal components of the
X-matrix (PC’s). In PLS, they are obtained by maximizing the
covariance between linear combinations of X and Y using
information about the X and Y variables. In both methods, the
components are then used as independent variables in a regression
equation for prediction.

PLS and PCR methods have been used to develop calibration
equations for determining sugars in aqueous mixtures [27]. The
best results were obtained with PLS first-derivative calibration
method. The standard errors of prediction obtained by the PLS
first- derivative regression are: 0.334 g/1 for glucose; 0.286 g/1 for
fructose; and 0.365 g/1 for sucrose. The results predicted by this
method were used to predict sugar profile in synthetic mixtures and
real beverage samples. The NIR spectroscopic method was
developed to noninvasively measure the concentration of alanine,
glucose, glutamine, and leucine in samples removed from an Sf-9
insect cell culture bioreactor [26]. Calibration models developed
from spiked spent medium produced better measurements than its
synthetic counterpart.

In the present study, FT-MIR and FT-Raman methods for quan-
titative determination of glucose, ethanol, and optical cell density of
Saccharomyces cerevisiae were investigated. The spectral data were
correlated with HPLC data using multivariate statistical analysis. The
main objective is to develop a rapid and simple FT-MIR and FT-
Raman procedure and a suitable calibration model to detect glucose,
ethanol, and optical cell density during ethanol fermentation.

Materials and methods

Microorganism and media

S. cerevisiae (ATCC 24859) was grown in a medium containing
(in grams per liter of water) 20 glucose, 6 yeast extract (Becton
Dickinson, Sparks, MD, USA), 0.23 CaCl,-2H,0, 4 (NH4),SOy,
1 MgS0O4-7H,0, and 1.5 KH,PO,, and stored at 4°C. A 24 -h static
culture grown at 30°C was used as inoculum (1%) in all
fermentations. Flask fermentations contained varying concentra-
tions of glucose (30—70 g/1) as carbon source. Samples were
taken for analysis from the flasks at different times during
fermentation, to span the entire analytes concentration range
desired. Spectral data were acquired using FT-MIR and FT-Raman
spectroscopic techniques directly without any sample preparation.

FT-MIR measurements
FT-MIR spectra were recorded on a Nicolet model 870 (Madison,
WI, USA) spectrometer equipped with a deuterated triglycine

sulphate (DTGS) detector. The sampling station was equipped
with an overhead ATR accessory, comprised of transfer optics
within the chamber through which infrared radiation was directed to
a detachable ATR zinc selenide crystal mounted in a shallow trough
for sample containment. Distilled water was used for background
spectra, and 256 coadded scans were taken for each sample from
4000 to 400 cm ~ " at a resolution of 16 cm ~ ' Single - beam spectra
of the samples were obtained, and corrected against the background
spectrum of water, to present the spectra in absorbance units. The
ATR crystal was carefully cleaned with water between successive
analyses and dried using nitrogen gas. Spectra were collected in
duplicate and used for multivariate analysis.

FT-Raman measurements

FT-Raman spectra were obtained using a Nicolet 870 spectrometer
with the Nicolet Raman module 32B (Madison, WI, USA) and
HeNe laser operating at 1064 nm with a maximum power of 2 W.
The system was equipped with an InGaAs (indium-—gallium
arsenide) detector, XT-KBr beamsplitter with 180° reflective
optics, and a fully motorized sample position adjustment feature. A
laser output power of 1.2 W was used, which was low enough to
prevent possible laser-induced sample damage and a high signal -
to-noise ratio. Data were collected at 32 cm ™' resolution with 256
scans. Spectra were used in the Raman shift range between 200
and 3600 cm ™' at 2-cm ™' data intervals. The system was
operated using the OMNIC 5.1 software and spectra were acquired
in triplicate.

Reference methods

Bacterial growth was followed by measuring optical cell density at
620 nm using a Bausch & Lomb Spectronic 20 spectrophotometer.
Ethanol and glucose concentrations were measured by using Waters
high performance liquid chromatography (HPLC) equipped with
column heater, auto sampler, computer controller, and Waters
model 2410 refractive index detector. Ethanol and glucose were
separated on a Bio-Rad Aminex HPX-87H column (300x7.8
mm) at 65°C, using 0.012 N sulfuric acid as the mobile phase at a
flow rate of 0.8 ml/min with a 20- ul injection volume.

Multivariate analysis

The sample set from S. cerevisiae cultures consisted of 37 samples
for calibration and 13 for validation. The spectral data from the
selected spectral regions were analyzed with GRAMS 32 (Galactic
Industries, Salem, NH) software using PLS and PCR methods.
PLS [14] and PCR [23] regressions were employed to determine
the concentrations of glucose, ethanol, and optical cell density of S.
cerevisiae cultures. In the set of binary or multicomponent
mixtures, these procedures have the potential to detect the various
components simultaneously.

The HPLC and spectral data are used for calibration and the
models developed were used to predict the concentrations of
glucose and ethanol, and the optical cell density in the samples of
the validation set. Calibration models were developed with spectra
in absorbance units using PLS and PCR analysis with original and
first- derivative transformed spectra. Both these methods use cross -
validation to assess the average predictive ability. The cross
validation method is a resampling technique based on “leaving one
sample out” procedure. This means that the calibration is
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Table 1 Functional groups, and their vibration modes obtained from the
FT-MIR spectra of S. cerevisiae culture medium
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Figure 1 FT-MIR spectrum of S. cerevisiae culture with the key band
assignments.

performed N times (N is the number of samples in the calibration
data set), each time leaving one sample out and testing the
calibration equation on this single sample. The PLS and PCR
methods must be computed for each number of components and
optimum number of factors for calibration was selected based on R>
and the predicted residual sum of squares (PRESS), which should
be minimized. The model with the best prediction ability is usually
selected by computing the standard error of prediction (SEP) and
standard error of calibration (SEC).
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Figure 2 FT-MIR spectra of pure (a) glucose and (b) ethanol with

the key band assignments.
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Here N, is the number of independent samples in the calibration set
and f'is the number of factors. In general, models with fewer factors
are less likely to exhibit over fitting, and tend to be more stable and
have better generalization ability. The optimal calibration method
will be selected based on the highest R? and lowest SEC in
calibration sets.

Results and discussion

FT-MIR spectroscopy

A typical FTIR spectrum of a S. cerevisiae culture is shown in
Figure 1. The spectrum provides composite information of all the
components in the medium including microbial components (cell

-0.3

-0.4

final — - — -initial pyt
!

-0.5 4
-0.6 1
-0.7
-0.8

Absorbance

2800 2300 1800 1300 800

Wave number (cm™)

Figure 3 FT-MIR spectra of S. cerevisiae culture at the initial and
final stages of fermentation.
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Table 2 Calibration and validation results for estimation of glucose,
ethanol, and optical cell density of S. cerevisiae using FT-MIR spectro-

scopy

Calibration method Calibration Validation
Factors R? SEC R? SEP

Glucose, g/l

PLS 8 0.985 2.59 0.955 2.837

PLS first derivative 6 0.992 1.938 0.979 1.819

PCR 10 0.992 2.460 0.979 1.922

PLS first derivative 12 0.996 2.610 0.980 1.745

Ethanol, g/1

PLS 8 0.996 1.089 0.983 1.805
PLS first derivative 4 0.995 1.150 0.991 1.243
PCR 8 0.996 1.104 0.985 1.680
PLS first derivative 9 0.996 1.008 0.992 1.284
Cell OD 620 um

PLS 10 0.916 0.572 0.764 0.634
PLS first derivative 6 0.895 0.507 0.744 0.590
PCR 11 0.918 0.565 0.757 0.627
PLS first derivative 12 0.925 1.008 0.732 0.614

R?, correlation coefficient; SEP, standard error of prediction, grams per
liter; SEC, standard error of calibration, grams per liter; PLS, partial least
squares; PCR, principal component regression.

walls, membranes, proteins, nucleic acids, etc.), glucose, ethanol,
and salts.

The spectra of cultures show absorbance bands at 881, 1044,
1077, 1239, 1457, 1540, 1650, and 2925 cm™'. These bands
represent the chemical groups of components present in the culture.
Assignment of functional groups corresponding to the vibration
modes was based on identification of the spectrum peaks and
matching the frequency with the corresponding chemical groups
that absorb in the MIR region. The fingerprint region between 800
and 1500 cm ™' mainly contains absorptions from the C—O
bending modes of the polysaccharide component. Structure in the
region 800—1200 cm ! reflects composition of glucose and
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Figure 4 Comparison of HPLC and FT-MIR analysis of ethanol
fermentation with S. cerevisiae.

0.6

final — - — -initial

Raman intensity

3200 2700 2200 1700 1200 700 200

Raman shift (cm™)

Figure 5 FT-Raman spectra of culture at the initial and final stages
of fermentation.

ethanol as shown in the FT-MIR spectra of pure glucose and
ethanol (Figure 2a and b). The region 1500—1580 cm ™' shows
strong absorbance of amide II functional groups (NH deformation
bands). The peak 1650 cm ™' contains amide I carbonyl
absorptions, which indicate the presence of protein. Both amide I
and II peaks are the most intense bands in nearly all bacterial
species examined [24]. This region provides evidence of relevant
quantitative and qualitative relationships between the various
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Figure 6 FT-Raman spectra of pure (a) glucose and (b) ethanol
with the key band assignments.



Table 3 Calibration results for estimation of glucose, ethanol, and optical
cell density of S. cerevisiae using FT-Raman spectroscopy

Calibration method Factors R? SEC
Glucose

PLS 2 0.958 6.810
PLS first derivative 2 0.724 12.070
PCR 1 0.839 10.520
PLS first derivative 1 0.801 10.243
Ethanol

PLS 2 0.912 3.340
PLS first derivative 2 0.872 4.110
PCR 2 0.907 3.505
PLS first derivative 2 0.853 4.392
Cell ODg20 nm

PLS 2 0.814 0.640
PLS first derivative 2 0.777 0.717
PCR 2 0.808 0.676
PLS first derivative 3 0.755 0.765

R?, correlation coefficient; SEC, standard error of calibration, grams per
liter; PLS, partial least squares; PCR, principal component regression.

secondary substructures of proteins. The peak at 2925 cm ™'

denotes CH stretching absorptions, which indicate the presence of
lipids. The assignments of functional groups and their vibration
mode corresponding to the structure of major components for S.
cerevisiae culture are listed in Table 1.

Quantitative analysis

Figure 3 shows FT-MIR spectra of culture at the initial and final
stages of fermentation. Visual inspection of these spectra indicates
that there are some qualitative differences in selected regions,
although at least some complex quantitative differences between
them were observed. Such spectra, essentially uninterpretable by
the naked eye, readily illustrate the need to employ multivariate
statistical techniques for their analyses. The most sensitive and
selective regions for multivariate analysis were those between 2800
and 3200 and 800 and 1500 cm ™" (Figure 3). These regions are
dominated by characteristic absorptions due to glucose, ethanol,
and proteins (cells) and hence were selected for PLS and PCR
calibration methods.

Table 2 summarizes the performance of the different calibration
models using PLS, PLS first-derivative, PCR, and PCR first-
derivative for predicting the concentration of glucose, ethanol, and
optical cell density of S. cerevisiae cultures. All calibration methods
gave satisfactory results for estimation of glucose and ethanol
concentrations. Correlation coefficient for the estimation of optical
cell density could be improved by including larger data sets. Results
show that PLS first-derivative was slightly better than other
methods. The optimum number of factors was the least (6, 4, and 6
factors for glucose, ethanol, and optical cell density, respectively)
for PLS first-derivative compared to other calibration methods
(Table 2). The highest correlation (R*) between the predicted and
actual values was 0.992, 0.995, and 0.895 for glucose, ethanol, and
optical cell density, respectively (Table 2), using the PLS first-
derivative method. The SEC values were 1.938 g/1 (for glucose),
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0.15 g/1 (for ethanol), and 0.507 (for optical cell density) using
PLS first-derivative calibration method.

The calibrations were then applied to the corresponding
validation data sets for the computation of glucose, ethanol, and
optical cell density of culture samples. Concentration profiles of
glucose and ethanol, and optical cell density measured by both
HPLC and FT-MIR methods during selected ethanol fermentation
are shown in Figure 4. Validation results show that the FTIR
spectroscopic technique could accurately predict the concentrations
of glucose and ethanol though the R? for optical cell density are
low (Table 2). The precision of this method could be improved by
studying larger multicomponent data sets. The statistical character-
istics using PLS first-derivative calibration method used a smaller
number of factors and hence can be recommended for quantitative
analysis of glucose and ethanol.

FT-Raman spectroscopy

Figure 5 shows the FT-Raman spectra of culture at the beginning
and end of fermentation. The functional groups of glucose, ethanol,
and proteins generally show much weaker bands in Raman than in
FT-MIR spectra. In general, Raman scattering for the culture
sample is weak, which suggests fairly high concentration of the
target analytes are required to be measured by the Raman technique.
This was confirmed by taking FT-Raman spectra of high
concentrations of glucose and ethanol (Figure 6a and b), which
show several clear characteristic Raman bands. The regions
between 250 and 600, 950 and 1200, and 2900 and 3300 cm ™!
are important in quantitative analysis (Figure 5) and were used for
quantitative analysis using PLS and PCR methods.

The calibration parameters for glucose, ethanol, and optical cell
density using different statistical procedures are given in Table 3. In
general, SEC values are high compared to results using FT-MIR,
though the number of optimum factors is less. Quantitative analysis
using FT-Raman spectra of aqueous solutions with low concen-
trations of the components are not accurate because of attenuation of
the spectra due to water [ 19]. Lower analyte concentrations can be
studied using the technique of resonance Raman spectroscopy,
where the exciting laser wavelength can be adjusted to the
absorption range of particular chromophores within the sample
[4]. Additionally Raman spectroscopy involves the use of powerful
lasers and their optical alignment to produce an intense focused path
of radiation on the sample, hence requiring moderate operator skill
in the alignment and operation of the equipment compared with FT-
MIR spectroscopy. Raman scattering of a culture can also be
improved by using a more sensitive germanium detector, which
needs liquid nitrogen for cooling. Further research on various
fermentations is required for any conclusive decision on the use of
FT-Raman as an alternative to FT-MIR for quantitative analysis.

Conclusions

The concentrations of glucose and ethanol, and the optical cell
density of S. cerevisiae during ethanol fermentation were measured
simultaneously and accurately by FT-MIR spectroscopy without
any sample preparation. FT-Raman spectroscopy is suitable for
analysis of major constituents in bioprocesses when they are
present at high concentrations. The developed method can be used
to measure other chemical components in the culture medium such
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as salts by noninvasive methods. The method provided in this paper
could be developed for rapid analysis of the overall metabolic rate
of the cells, because the FT-MIR method has a potential to
determine theoretically most of the chemical components relating to
the metabolism as well as sugars.
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